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Session starts at 12pm EST
•Please turn your video off and mute your line
•This session is being recorded
•See ZOOM Help Center for connection issues: 
https://support.zoom.us/hc/en-us

• If issues persist and solutions cannot be found through Zoom 
contact hl332@cornell.edu

Summer of NYTD Session 3

https://support.zoom.us/hc/en-us
mailto:hl332@cornell.edu


Summer schedule:
• August 8th - Introduction
• August 15th - Data Structure
• August 22nd - Expert Presentation I
• August 29th - Expert Presentation II
• September 5th - Linking to NCANDS & AFCARS
• September 12th - Research Presentation I
• September 19th - Research Presentation II

Introduction



Presenters: 
Michael Dineen (med39@cornell.edu) and Frank Edwards 
(fedwards@cornell.edu)

Today's Presentation: 
Understanding and addressing missing data in NYTD

mailto:med39@cornell.edu
mailto:fedwards@cornell.edu


• Develop a clear understanding of the design of the NYTD and the 
structure of the sample

• Discuss differences in the composition of state samples and methods 
states use to collect data

• Discuss sources of missing data and non-response
• Discuss the theories behind statistical approaches to missing data, with a 

focus on multiple imputation
• Discuss some practical strategies to address missing data in the NYTD

Agenda for today's webinar



NYTD Design



• The user's guide and codebook are your friends
• The NYTD Outcomes Survey is ongoing, with new cohorts 

commencing every 3 years, starting with Federal Fiscal Year 2011. 
• Cohort 1 was 17 in 2011, Cohort 2 was 17 in 2014

• Each Cohort has three waves, with two years between surveys 
• Cohort 1 [2011, 2013, 2015], Cohort 2 [2014, 2016, 2018]

Understanding the structure of the 
National Youth in Transition Database (NYTD)



• Youth who: 
• Are in foster care at the time they took the survey
• Answer at least one survey question on the baseline survey
• Took the survey within 45 days of their 17th birthday

• Follow-up surveys are conducted during the six-month AFCARS 
reporting period that includes the youth's 19th and 21st birthdays.

Who is in the cohort?



• States are permitted to sample the cohort for the age 19 and 21 
follow-ups.

• Simple random sampling is required
• Sampling is done once, after the cohort is determined.
• The same sample is used for both the age 19 and age 21 surveys.

State sampling



Sources of missing data in the NYTD



• Response in Wave 1 to voluntary questions is required to be selected 
for the cohort 
• Youth who do not respond to the baseline survey are not followed-

up at subsequent waves, so all survey data for these cases are 
missing

• However, demographic data are present
• This means that the cohort is not a random or representative sample if 

choosing to respond is associated with any of the variables in the 
study.

Sources of missing data: not-in-cohort



• Youth did not participate in a wave.
• All survey data for that wave will be missing for that row.
• Demographics will be present.

Wave non-response



• Youth declined: The State agency located the youth successfully and 
invited the youth's participation, but the youth declined to 
participate in the data collection.

• Parent declined: The State agency invited the youth's participation, 
but the youth's parent/guardian declined to grant permission. 
• This response may be used only when the youth has not reached 

the age of majority in the State and State law or policy requires a 
parent/guardian's permission for the youth to participate in 
information collection activities.

Reasons for non-response



• Incapacitated: The youth has a permanent or temporary mental or 
physical condition that prevents him or her from participating in the 
outcomes data collection.

• Incarcerated: The youth is unable to participate in the outcomes data 
collection because of his or her incarceration.

• Runaway/missing: A youth in foster care is known to have run away or 
be missing from his or her foster care placement.

• Unable to locate/invite: The State agency could not locate a youth who 
is not in foster care or otherwise invite such a youth's participation.

• Death: The youth died prior to his participation in the outcomes data 
collection.

Reasons for non-response (continued)



• This is the easiest form of missing data to deal 
with, but rare in NYTD

Question non-response



Approaches to missing data 101



Why should we care?

• Most statistical software will conduct "complete-case analysis" by 
default 
• This uses only those observations where regression outcomes and 

all predictors are non-missing
• Depending on how much data is missing in the variables you've 

chosen, this may result in throwing away a lot of perfectly good 
information!

• This (at minimum) biases your standard errors, and may bias your 
parameter point estimates

• With a few assumptions, we can correct the problem



Why are data missing?

• Missing completely at random (MCAR): The probability of a value 
being missing is the same for all observations in the data. Missingness
is determined by a coin flip/dice roll

• Missing at random (MAR): The probability of a value being missing is 
not completely at random, depends only on available (observed) 
information. The probability of a value being missing is determined by 
other variables in the data

• Non-random missing data (MNAR): The probability of a value being 
missing depends on either A) some unobserved variable or B) the 
value itself (censorship)



Basic approaches to missing data

• Listwise deletion (complete case analysis) 
• Appropriate for data with very few missing observations, or when 

missingness is completely at random and missingness is rare 
(independent of all observed and unobservable variables)

• Using alternative information (e.g. borrowing observation of sex from 
prior survey wave)

• Nonresponse weighting 
• Becomes difficult when many variables are missing, sub-populations 

of interest differ



Basic approaches to missing data

• Deterministic imputation methods 
• Many examples: linear interpolation or last observed, regression 

imputation
• This is generally a bad idea. Covariance estimates and standard 

errors are biased downward



• Multiple imputation (MI)
• Iterative modeling of all missing outcomes/predictors in model
• Produces fake datasets, allows you to average over uncertainty 

generated by missing data
• Does not recover "true" values
• Under missing at random assumption, generates unbiased 

parameter and variance estimates

Basic approaches to missing data



• Has two effects on model uncertainty 
• Increases your N because we aren't deleting data (pushes 

standard errors downward)
• Adds in appropriate noise due to uncertainty around where 

missing values are (pushes standard errors upward)
• If missingess is associated with observables, MI can correct bias in 

parameter estimates

What multiple imputation does:



Understand your data! 
• Read the documentation
• Do plenty of exploratory data analysis (cross tabs, data 

visuals, descriptives, look at the raw data)
• Develop an understanding of the mechanisms of missing data 

in each dataset you use
• Test your ideas for mechanisms of missing data when feasible

My preferred approach



• Use available information 
• Borrow data from other observations when possible
• Some variables are time-stable (age) and can be borrowed from 

prior observations - but remember cautions against deterministic 
imputation and inducing bias

My preferred approach



• If MAR is a reasonable assumption (it often is), conduct multiple 
imputation 
• Because MAR is conditional on observables, including many 

variables in imputation models is often a good idea
• Apply preferred final model / analysis over each imputed dataset, 

combine with Rubin's rules, report revised estimates.

My preferred approach



Applying missing data methods to 
NYTD: a very brief introduction



• This is a very brief introduction, more work will be required to get it 
right for your analysis

• I'm using R (and the mice package) for my demo, but all major 
statistical packages (Stata, SAS, SPSS) should be able to use similar 
techniques

• All code (and slides, but no data!) is available at https://github.com/f-
edwards/nytd_missing_data_demo

• We are using NYTD Outcomes File, Cohort Age 17 in FY2011, Waves 1-
3 (NDACAN Dataset 202).

• Submit data requests at 
https://www.ndacan.cornell.edu/datasets/request-dataset.cfm

Some notes before starting

https://github.com/f-edwards/nytd_missing_data_demo
https://www.ndacan.cornell.edu/datasets/request-dataset.cfm


Load in packages and data

### load required packages
library(tidyverse)
library(lubridate)
library(mice)
### read in tab separated data
nytd<-read_tsv("Outcomes_C11W3v2.tab")



Create cohort subset

### count total population, cohort based on baseline
pop<-sum(nytd$Wave==1)
### subset on those in cohort
cohort<-nytd%>%

filter(FY11Cohort==1)%>%
filter(!(SampleState==1 & InSample==0))



Describe response rates

## response rate by wave
nytd%>%filter(FY11Cohort==1)%>%
filter(Responded==1)%>%
group_by(Wave)%>%
summarise(baseline = pop, responses = n(), response_rate = n()/pop)

Wave
<int>

baseline
<int>

responses
<int>

response_rate
<dbl>

1 29104 15597 0.536
2 29104 7897 0.271
3 29104 7470 0.257



Response rates for cohort 



Question non-response



What drives non-response?



Non-response by gender



Non-response by race and wave (white / non-white)



• For the purposes of demonstration, we'll assume that CurrPTE is MAR 
conditional on sex, race/ethnicity, and age (Wave).

• But a full imputation model should include AS MANY predictors as 
possible to maximize predictive performance and satisfy MAR 
assumption. This is just a demonstration of what we can do

• Note that models grow in complexity as new predictors (with their own 
missing values) increase computation time

Proceeding with Multiple Imputation



Set up imputation dataset
to_impute<-cohort%>%
select(Wave, Sex, CurrPTE, RaceEthn)%>%
mutate(CurrPTE = ifelse(CurrPTE == 77, NA, CurrPTE))%>%
mutate(Sex = factor(Sex),

Wave = factor(Wave),
CurrPTE = factor(CurrPTE),
RaceEthn = factor(ifelse(RaceEthn==99, NA, RaceEthn)))

head(to_impute)

Row # Wave Sex CurrPTE RaceEthn
1 1 Female 0 1
2 1 Female 0 3
3 1 Female 1 1
4 1 Male 0 1
5 1 Female 0 3
6 1 Male 2 7



Look at missing data patterns 

### install.packages("mice") if needed
### wonderful tutorials at https://stefvanbuuren.github.io/mice/
summary(to_impute)

Wave Sex CurrPTE RaceEthn

1:11713 Female: 17109 0   : 21066 1      :15872

2:11712 Male: 18235 1   : 5307 2      :10431

3:11994 NA's:   75 2   : 529 7      : 6173

NA's: 8517 6      : 1499

3      :  605

(Other):  377

NA's   :  462



Predictors and methods
imp<-mice(to_impute, maxit=0, seed = 123)
### show the predictor matrix
imp$predictorMatrix

### show imputation methods, logistic and multinomial
imp$method

Wave Sex CurrPTE RaceEthn
Wave 0 0 0 0
Sex 1 0 1 1
CurrPTE 1 1 0 1
RaceEthn 1 1 1 0

Wave Sex CurrPTE RaceEthn
"" "logreg" "polyreg" "polyreg"



Impute data with 5 imputed data sets
imp_out<-mice(to_impute,

maxit = 10,
m = 5,
seed = 123,
predictorMatrix = imp$predictorMatrix,
method = imp$method)

iter

1

imp

1

variable

Sex  CurrPTE RaceEthn

1 2 Sex  CurrPTE RaceEthn

1 3 Sex  CurrPTE RaceEthn

1 4 Sex  CurrPTE RaceEthn

1 5 Sex  CurrPTE RaceEthn

2 1 Sex  CurrPTE RaceEthn

2 2 Sex  CurrPTE RaceEthn

2 3 Sex  CurrPTE RaceEthn

2 4 Sex  CurrPTE RaceEthn

2 5 Sex  CurrPTE RaceEthn



Check out convergence



Check out effects of imputation on CurrPTE



Compare imputed to original data

.imp

<fct>

pct_PTE

<dbl>

pct_nonPTE

<dbl>

0 0.150 0.595

1 0.210 0.769

2 0.211 0.767

3 0.212 0.767

4 0.210 0.769

5 0.209 0.770



Only among non-missings

.imp

<fct>

pct_PTE

<dbl>

pct_nonPTE

<dbl>

0 0.197 0.783

1 0.210 0.769

2 0.211 0.767

3 0.212 0.767

4 0.210 0.769

5 0.209 0.770



Conduct a pooled analysis

### fit logistic regression on each imputed data set
fit_imp<-with(imp_out, glm(CurrPTE == "1" ~ (Sex=="Male") + 

Wave + RaceEthn, 
family = "binomial"))

## Pool results with Rubin's rules 
pooled<-pool(fit_imp)
### just with observed data
fit<-with(to_impute, glm(CurrPTE == "1" ~ (Sex=="Male") + 

Wave + RaceEthn,
family = "binomial"))



Compare models

library(broom)
# with only observed
tidy(fit)[1:2, 1:3]

# with imputed data
summary(pooled)[1:2, 1:2]

term estimate std.error
(Intercept) -1.8688112 0.03678118
Sex == "Male"TRUE -0.1768677 0.03153402

term estimate std.error
(Intercept) -1.8656265 0.03539415
Sex == "Male"TRUE -0.1830675 0.02716801



Going deeper



What we accomplished

• We adjusted our models for non-response bias between waves 
• We imputed 5 complete datasets for the cohort, averaged 

over uncertainty in our models
• This appears to matter for our estimates of Employment ~ 

Gender



This approach is incomplete

• We haven't dealt with selection into the cohort
• We haven't fully explored the mechanisms of missing data
• Our model is too simplistic 

• Incorporate documented reason for non-response into models
• Extend to focal variables for your analysis
• Think carefully about why your variable is missing, what other 

observed variables in the data may help you estimate uncertainty
• Bonus points: go multilevel



Possible extensions of this method

• Theoretically, the method could be used to estimate uncertainty 
intervals for parameters for the full NYTD-eligible population 
Though this would be computationally intensive and

• Stretch the MAR assumption perhaps too far (if participation in 
the cohort is conditional on unobservables)



Final notes

• Approaches to missing data are not one-size fits all.
• Think hard about why your data are missing
• If they are MAR conditional on observables, MI may 

be appropriate



Further reading

• Rubin, "Multiple Imputation for Nonresponse in Surveys"
• Gelman and Hill, "Data Analysis Using Regression and 

Multilevel/Hierarchical Models"
• van Buuren, "mice: Multivariate Imputation by Chained 

Equations in R"



Questions?
• Please use the chat feature in Zoom to submit questions during 

the Q and A
• Code and slides available at:
• https://github.com/f-edwards/nytd_missing_data_demo
• Frank Edwards: fedwards@cornell.edu

Michael Dineen: med39@cornell.edu

Chat Questions:
1. Is the non-response reason captured even if they don't participate or are they dropped 

completely from the survey?
2. Of the 5 imputations, which imputation do you use to report results. 
3. Could you describe uncertainty intervals and how you use them?
4. Have you tried other algorithms for imputation such as KNN, K nearest neighbor?
5. What about multiple imputation for simpler metrics such as medians?

https://github.com/f-edwards/nytd_missing_data_demo
mailto:fedwards@cornell.edu
mailto:med39@cornell.edu


Next Week

• Date: Wednesday August 29th from 12pm-1pm
• Presenter: Michael Dineen, BCTR at Cornell University
• Topic: Expert Presentation II-Developing and using sample 

weights, and other common questions we get from data users.
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