# WELCOME TO THE NDACAN SUMMER TRAINING SERIES!

National Data Archive on Child Abuse and Neglect

Duke University, Cornell University, University of California San Francisco, & Mathematica





### SUMMER TRAINING SERIES SCHEDULE

- July 2<sup>nd</sup>, 2025
  - Developing a research question & exploring the data
- July 9<sup>th</sup>, 2025
  - Data management
- July 16th, 2025
  - Linking data
- July 23<sup>rd</sup>, 2025
  - Exploratory Analysis
- July 20<sup>th</sup>, 2025
  - Visualization and finalizing the analysis



This session is being recorded.

Please submit questions to the Q&A box.

See ZOOM Help Center for connection issues: <a href="https://support.zoom.us/hc/en-us">https://support.zoom.us/hc/en-us</a>

If issues persist and solutions cannot be found through Zoom, please contact Andres Arroyo at <a href="mailto:aa17@cornell.edu">aa17@cornell.edu</a>.

### SESSION AGENDA

STS recap

Exploratory analysis

Demonstration in R

### **STS RECAP**

### LINKING DATA

- Record-level linkage possible internally with NDACAN administrative data
- Aggregate linkage possible with other NDACAN data, external data
- Linkage requires clean, well-formatted data files with shared variables
- Linkage is a useful tool for building large datasets, dealing with data limitations, and enabling powerful research designs
- Linkage can create and/or amplify data problems if data limitations are not understood and addressed

### RESEARCH QUESTION

What is the relationship between lifetime incidence of removal and full-time employment among youth three years after aging out of foster care?

### EXPLORATORY ANALYSIS

# INTRODUCTION TO LINEAR REGRESSION

- Regression analysis is a statistical method for estimating the relationship between two (or more) random variables:
  - An outcome (or dependent variable)
  - One or more predictors (or independent variables)
- Linear regression is a powerful, flexible class of regression models that assume a linear relationship between the outcome and predictors

### ESTIMATING LINEAR REGRESSION MODELS

- Linear regression models find the line (or hyperplane) of best fit representing the relationship between two (or more) random variables
- The most common method for estimating regression models is ordinary least squares (OLS)
- OLS minimizes the sum of the squares of the differences (residuals) between predicted values (blue line) and observed values (red points)



# FUNDAMENTAL COMPONENTS OF LINEAR REGRESSION MODELS

Consider the following bivariate regression:

$$\mathbf{y} = \beta_0 + \mathbf{x}\beta_1 + \mathbf{\varepsilon}$$

y is a  $N \times 1$  vector of outcomes, where N is the number of observations in our data x is a  $N \times 1$  vector of predictors

 $\beta_0$  is the main intercept (the predicted value of y when x = 0)

 $\beta_1$  is the coefficient (or parameter) of interest

 $\beta_1$  represents the slope of the line of best fit

It is the main goal of regression analysis to estimate coefficients of interest validly (without bias) and efficiently (with precision)

 $\epsilon$  is the error term, a  $N \times 1$  vector of residuals (distances between red dots and blue line)

### BASELINE MODEL

Instead of using matrix notation, we can represent the model using indexing:

$$y_i = \beta_0 + x_i \beta_1 + \varepsilon_i$$

In the case of our research design, the regression model takes the form:

$$CurrFTE_3_i = \beta_0 + TOTREM_i\beta_1 + \varepsilon_i$$

- Because our outcome is binary, this model is known as a linear probability model.
  - In Presentation 5 we'll explore other models for binary and other categorical outcomes.

### CORRELATION AND CAUSALITY

Recall our research question:

What is the relationship between lifetime incidence of removal and full-time employment among youth three years after aging out of foster care?

What if we want to strengthen it to something like:

What is the effect of lifetime incidence of removal on full-time employment among youth three years after aging out of foster care?

### **OMITTED-VARIABLE BIAS**



### **OMITTED-VARIABLE BIAS: EXAMPLE**



# CONTROLLING FOR OBSERVABLE CONFOUNDERS

We can deal with observed confounders by incorporating them into our model as additional predictors (or covariates).

Note that adding a predictor with C categories introduces C-1 parameters, which measure the difference in outcome for each category relative to a reference category (here,  $White_i$ )

$$CurrFTE\_3_i = \beta_0 + TOTREM_i\beta_1 +$$
 
$$Black_i\beta_2 + AIAN_i\beta_3 + Asian_i\beta_4 + NHPI_i\beta_5 + Multi_i\beta_6 + Hisp_i\beta_7 +$$
 
$$\varepsilon_i$$

# CONTROLLING FOR UNOBSERVABLE CONFOUNDERS

- There are many, many potential confounders that are not observed or even observable
  - For example, the relationship between foster placement and employment may be confounded by (intangible) features of child welfare policy and practice
- One simple strategy for addressing such unobserved confounders: introduce group-specific intercepts, or fixed effects
  - For example, if CPS systems vary across states but are stable within them, including state intercepts will control for them

### **EXAMPLE: STATE FIXED EFFECTS**

$$y = \beta_0 + x\beta_1 + S\gamma + \varepsilon$$

**S** is an  $N \times (G-1)$  matrix of indicator variables, where G is the number of US states

 $\gamma$  is a  $(G-1)\times 1$  vector of coefficients, or state fixed effects

$$CurrTFE_3 = \beta_0 + TOTREM\beta_1 + RaceEthn\delta + State\gamma + \varepsilon$$

### **STRATIFICATION**

- Perhaps there's reason to think the answer to your research question will be different for different populations.
  - For example, the relationship between removal incidence and full-time employment may be different for people who are and are not currently enrolled in school
- Stratification allows our model estimates to vary across the values of a stratum variable
  - For example, we could estimate our model separately on currently enrolled and not currently enrolled populations
  - Or we could interact the enrollment variable (CurrEnroll) with all other model parameters

### RELAXING PARAMETRIC ASSUMPTIONS

- By default, linear models assume linear relationships between predictors and outcomes
- We can relax this constraint in at least two ways:
  - Adding quasi-linear parameters like quadratic terms or splines
  - Including separate parameters for each level of a variable
- The next presentation will explore models for non-continuous outcomes

# EXTENSION: DEALING WITH MISSING DATA

- Statistical software (including most R packages) will almost always listwise-delete records with missing values of modeled variables
- Listwise deletion is rarely advisable, particularly if large amounts of data are missing
- Always:
  - Examine the degree of missingness in your data
  - Consider the mechanisms that generated the missing data
  - Implement a defensible approach to dealing with missing data

### **DEMONSTRATION IN R**

## QUESTIONS?

ALEX ROEHRKASSE AROEHRKASSE BUTLER. EDU

NOAH WON NOAH.WON@DUKE.EDU

PAIGE LOGAN PRATER
PAIGE.LOGANPRATER@UCSF.EDU

### NEXT WEEK...

**Date**: July 30<sup>th</sup>, 2025

Topic: Visualization and Finalizing the Analysis

**Instructor**: Noah Won

#### R CODE PAGE I OF 5

```
# NOTES #
#This program file demonstrates strategies discussed in
# session 4 of the 2025 NDACAN Summer Training Series
# "Data Management."
# For questions, contact the presenter
# Noah Won (noah.won@duke.edu).
# Note that because of the process used to anonymize data,
# all unique observations include partially fabricated data
# that prevent the identification of respondents.
# As a result, all descriptive and model-based results are fabricated.
# Results from this and all NDACAN presentations are for training purposes only
# and should never be understood or cited as analysis of NDACAN data.
#TABLE OF CONTENTS #
# 0. SETUP
# I. Simple Linear Regression
# 2. Multiple Regression
# 3. Stratified Multiple Regression
```

#### R CODE PAGE 2 OF 5

```
# 0. SETUP #
# Clear environment
rm(list=ls())
# Installs packages if necessary, loads packages if (!requireNamespace("pacman", quietly = TRUE)){ install.packages("pacman")
pacman::p_load(data.table, tidyverse, mice)
# Defines filepaths working directory project <- "C:/Users/nhwn1/Downloads/STS5/data" data <- "C:/Users/nhwn1/Downloads/STS5/data"
# Set working directory
setwd(project)
# Set seed
set.seed(1013)
```

#### R CODE PAGE 3 OF 5

```
# Let's read in our cleaned, anonymized
# versions of the 2020 AFCARS files
afcars <- fread(paste0(data,'/afcars_clean_anonymized_linear.csv')) head(afcars, 20)
# Running frequency tables of predictors of interest table(afcars$SEX)
table(afcars$RaceEthn)
table(afcars2$FCMntPay)
\# Creating Dummy Variables and Age Variables for Predictors \# Also filtering out those older than 30
afcars2 <- afcars %>%
        mutate(SEX_d = case_when(
SEX == "Male" ~ I,
           SEX == "Female" \sim 0),
        Hispanic = case when(
RaceEthn == "Hispanic" ~ I,
           TRUE \sim 0),
        age = as.numeric(difftime(Sys.Date(), DOB, units = "days")) / 365.25
        filter(age <= 30)
# Checking new derived variables table(afcars2$SEX_d) table(afcars2$Hispanic)
table(afcars2$age)
```

#### R CODE PAGE 4 OF 5

```
# Let's run a linear regression using age as a predictor and fcmntpay as an outcome
model <- Im(FCMntPay \sim age, data = afcars2)
summary(model)
#Let's visualize this model
ggplot(afcars 2, aes(x = age, y = FCMntPay)) +
 geom point() +
 geom_smooth(method = "lm", col = "red") +
 labs(title = "Linear Regression: FCMntPay ~ age",
     x = "age",
     y = "FCMntpay")
#A written form of our model is as follows: FCMntPay = 85.594 * age - 139.5495
# 3. Multiple Linear Regression #
# Our model seems to describe a positive relationship between age and FCMntPay but what about
# Hispanic status as a confounder?
model2 <- Im(FCMntPay \sim age + Hispanic, data = afcars 2)
summary(model2)
# It seems that Hispanic status has a negative effect on FCMntPay
# Keep in mind that the beta values for age and the intercept have changed #A written form of our model is as follows: FCMntPay = 85.594 * age + -105.2086 * Hispanic -
119.0115
```

#### R CODE PAGE 5 OF 5

```
# 4. Stratified Multiple Linear Regression #
# Stratified regression models fit different models based on the stratifications of a provided variable
# Adding a dummy variable and using a stratified regression model can be used to address confounding variables
# Stratified models are helpful when a variable violates linearity or homoscedasticity assumptions and cannot
# be used in a linear model
afcars3 <- afcars2 %>%
 filter(!is.na(SEX d))
model3 <- afcars3 %>%
 group_by(SEX_d) %>%
 do(model4 = Im(FCMntPay \sim Hispanic + age, data = .))
model3 %>%
 do({
  model_summary <- summary(.$model)
  data.frame(
   SEX d = unique(.\$SEX d),
    Intercept = coef(model summary)[1, 1],
    Hispanic coef = coef(model summary)[2, 1],
   Age coef = coef(model summary)[3, 1]
#A written form of our model is as follows:
#Women - FCMntPay = 98.5 * age + -118 * Hispanic - 206
# Men - FCMntPay = 73.2 * age + -85.7 * Hispanic - 40.1
# It seems that women have a larger increase in FCMntPay compared to men as they age, but Hispanic
# women have less FCMntPay than Hispanic men
```