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• July 2nd, 2025 

• Developing a research question & exploring the data 

• July 9th, 2025 

• Data management 

• July 16th, 2025 

• Linking data 

• July 23rd, 2025 

• Exploratory Analysis 

• July 20th, 2025 

• Visualization and finalizing the analysis
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SUMMER TRAINING SERIES SCHEDULE



LIFECYCLE 
OF AN 

NDACAN 
RESEARCH 
PROJECT

This session is being recorded. 

Please submit questions to the Q&A box. 

See ZOOM Help Center for connection 

issues: https://support.zoom.us/hc/en-us

If issues persist and solutions cannot be 

found through Zoom, please contact  

Andres Arroyo at aa17@cornell.edu.
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• STS recap 

• Exploratory analysis 

• Demonstration in R
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SESSION AGENDA
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STS RECAP



• Record - level linkage possible internally with NDACAN 

administrative data 

• Aggregate linkage possible with other NDACAN data, external data 

• Linkage requires clean, well - formatted data files with shared variables 

• Linkage is a useful tool for building large datasets, dealing with data 

limitations, and enabling powerful research designs 

• Linkage can create and/or amplify data problems if data limitations 

are not understood and addressed
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LINKING DATA



What is the relationship between lifetime incidence of removal and full-

time employment among youth three years after aging out of foster care?
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RESEARCH QUESTION
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EXPLORATORY ANALYSIS



• Regression analysis is a statistical method for estimating 

the relationship between two (or more) random variables:  

• An outcome (or dependent variable) 

• One or more predictors (or independent variables)  

• Linear regression is a powerful, flexible class of regression 

models that assume a linear relationship between the 

outcome and predictors
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INTRODUCTION TO LINEAR 
REGRESSION



• Linear regression models find the line (or 

hyperplane) of best fit representing the 

relationship between two (or more) 

random variables 

• The most common method for 

estimating regression models is ordinary 

least squares (OLS) 

• OLS minimizes the sum of the squares of 

the differences (residuals) between 

predicted values (blue line) and observed 

values (red points) 
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ESTIMATING LINEAR REGRESSION MODELS



• Consider the following bivariate regression:
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FUNDAMENTAL COMPONENTS OF 
LINEAR REGRESSION MODELS



• Because our outcome is binary, this model is known as a linear 

probability model. 

• In Presentation 5 we’ll explore other models for binary and other 

categorical outcomes.
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Instead of using matrix notation, we can represent the model using 

indexing: 

In the case of our research design, the regression model takes the 

form: 

BASELINE MODEL



• Recall our research question:  

What is the relationship between lifetime incidence of removal and full-
time employment among youth three years after aging out of foster 

care? 

• What if we want to strengthen it to something like:  

What is the effect of lifetime incidence of removal on full - time 
employment among youth three years after aging out of foster care? 
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CORRELATION AND CAUSALITY
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OMITTED-VARIABLE BIAS
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OMITTED-VARIABLE BIAS: EXAMPLE
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CONTROLLING FOR OBSERVABLE 
CONFOUNDERS



• There are many, many potential confounders that are not 

observed or even observable 

• For example, the relationship between foster placement and 

employment may be confounded by (intangible) features of child welfare 

policy and practice 

• One simple strategy for addressing such unobserved 

confounders: introduce group - specific intercepts, or fixed 

effects 

• For example, if CPS systems vary across states but are stable within 

them, including state intercepts will control for them
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CONTROLLING FOR UNOBSERVABLE 
CONFOUNDERS
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EXAMPLE: STATE FIXED EFFECTS



• Perhaps there’s reason to think the answer to your research question 

will be different for different populations. 

• For example, the relationship between removal incidence and full - time 

employment may be different for people who are and are not currently enrolled in 

school 

• Stratification allows our model estimates to vary across the values of a 

stratum variable 

• For example, we could estimate our model separately on currently enrolled and 

not currently enrolled populations 

• Or we could interact the enrollment variable ( CurrEnroll ) with all other model 

parameters 
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STRATIFICATION



• By default, linear models assume linear relationships between 

predictors and outcomes 

• We can relax this constraint in at least two ways:  

• Adding quasi - linear parameters like quadratic terms or splines 

• Including separate parameters for each level of a variable 

• The next presentation will explore models for non - continuous 

outcomes
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RELAXING PARAMETRIC ASSUMPTIONS



• Statistical software (including most R packages) will almost 

always listwise - delete records with missing values of 

modeled variables 

• Listwise deletion is rarely advisable, particularly if large 

amounts of data are missing 

• Always:  

• Examine the degree of missingness in your data 

• Consider the mechanisms that generated the missing data 

• Implement a defensible approach to dealing with missing data 
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EXTENSION: DEALING WITH MISSING 
DATA
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DEMONSTRATION IN R



QUESTIONS? 

ALEX ROEHRKASSE 
AROEHRKASSE@BUTLER.EDU

NOAH WON
NOAH.WON@DUKE.EDU

PAIGE LOGAN PRATER
PAIGE.LOGANPRATER@UCSF.EDU
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NEXT WEEK…

Date:  July 30th, 2025 

Topic:  Visualization and Finalizing the Analysis 

Instructor: Noah Won 
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R CODE PAGE 1 OF 5

######### 
# NOTES # 
######### 

# This program file demonstrates strategies discussed in 
# session 4 of the 2025 NDACAN Summer Training Series 
# "Data Management."  

# For questions, contact the presenter 
# Noah Won (noah.won@duke.edu). 

# Note that because of the process used to anonymize data,  
# all unique observations include partially fabricated data 
# that prevent the identification of respondents. 
# As a result, all descriptive and model - based results are fabricated. 
# Results from this and all NDACAN presentations are for training purposes only 
# and should never be understood or cited as analysis of NDACAN data.  

##################### 
# TABLE OF CONTENTS # 
##################### 

# 0. SETUP 
# 1. Simple Linear Regression 
# 2. Multiple Regression 
# 3. Stratified Multiple Regression
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R CODE PAGE 2 OF 5

############ 
# 0. SETUP # 
############ 

# Clear environment 
rm (list=ls()) 

# Installs packages if necessary, loads packages  
if (! requireNamespace (" pacman ", quietly = TRUE)){ 
 install.packages   ("   pacman   ") 

} 
pacman  ::  p_load  (  data.table  ,  tidyverse  , mice) 

# Defines filepaths working directory 
project < - "C:/Users/nhwn1/Downloads/STS5/data" 
data < - "C:/Users/nhwn1/Downloads/STS5/data" 

# Set working directory 
setwd (project) 

# Set seed  
set.seed (1013) 
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R CODE PAGE 3 OF 5

################### 
# 2. Simple Linear Regression # 
################### 

# Let's read in our cleaned, anonymized 
# versions of the 2020 AFCARS files 
afcars < - fread (paste0(data,'/afcars_clean_anonymized_linear.csv')) 
head(afcars, 20) 

# Running frequency tables of predictors of interest 
table( afcars$SEX ) 
table( afcars$RaceEthn ) 
table(afcars2$FCMntPay) 

# Creating Dummy Variables and Age Variables for Predictors 
# Also filtering out those older than 30 
afcars2 <  -  afcars %>%  

mutate(        SEX_d            =            case_when            ( 
 SEX == "Male" ~ 1, 

  SEX == "Female" ~ 0), 
Hispanic =            case_when            ( 

RaceEthn        == "Hispanic" ~ 1, 
TRUE ~ 0), 

 age =       as.numeric            (            difftime            (            Sys.Date            (), DOB, units = "days")) / 365.25 
 ) %>% 
 filter(age <= 30) 

# Checking new derived variables 
table(afcars2$SEX_d) 
table(afcars2$Hispanic) 
table(afcars2$age)
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R CODE PAGE 4 OF 5

# Let's run a linear regression using age as a predictor and fcmntpay as an outcome 
model < - lm( FCMntPay ~ age, data = afcars2) 
summary(model) 

#Let's visualize this model 
ggplot  (afcars2,  aes  (x = age, y =  FCMntPay  )) +  

  geom_point   () + 
  geom_smooth   (method = "lm", col = "red") + 
  labs(title = "Linear Regression:    FCMntPay    ~ age",  

       x = "age",  
       y = "        FCMntpay        ") 

# A written form of our model is as follows: FCMntPay = 85.594 * age - 139.5495 

########################################## 
# 3. Multiple Linear Regression # 
# Our model seems to describe a positive relationship between age and  FCMntPay  but what about  
# Hispanic status as a confounder? 
model2 < - lm( FCMntPay ~ age + Hispanic, data = afcars2) 
summary(model2) 

# It seems that Hispanic status has a negative effect on FCMntPay 
# Keep in mind that the beta values for age and the intercept have changed 
# A written form of our model is as follows: FCMntPay = 85.594 * age + - 105.2086 * Hispanic - 
119.0115

28



R CODE PAGE 5 OF 5

########################################## 
# 4. Stratified Multiple Linear Regression # 
########################################## 
# Stratified regression models fit different models based on the stratifications of a provided variable 
# Adding a dummy variable and using a stratified regression model can be used to address confounding variables 
# Stratified models are helpful when a variable violates linearity or homoscedasticity assumptions and cannot 
# be used in a linear model 
afcars3 < - afcars2 %>% 
 filter(!is.na(   SEX_d   )) 

model3 < - afcars3 %>% 
 group_by   (   SEX_d   ) %>% 
do(model4 = lm(   FCMntPay   ~ Hispanic + age, data = .)) 

model3 %>% 
do({ 

model_summary     <     -     summary(.$model) 
data.frame     ( 
 SEX_d        = unique(.$        SEX_d        ),  
  Intercept =        coef        (        model_summary        )[1, 1],  
Hispanic_coef       =       coef       (       model_summary       )[2, 1], 
Age_coef       =       coef       (       model_summary       )[3, 1] 

 ) 
  }) 
# A written form of our model is as follows:  
# Women - FCMntPay = 98.5 * age + - 118 * Hispanic - 206 
# Men - FCMntPay = 73.2 * age + - 85.7 * Hispanic - 40.1 
# It seems that women have a larger increase in FCMntPay compared to men as they age, but Hispanic 
# women have less FCMntPay than Hispanic men
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