WELCOME TO THE NDACAN SUMMER TRAINING SERIES!

National Data Archive on Child Abuse and Neglect

Duke University, Cornell University, University of California San Francisco, & Mathematica

SUMMER TRAINING SERIES SCHEDULE

- July 2nd, 2025
 - Developing a research question & exploring the data
- July 9th, 2025
 - Data management
- July 16th, 2025
 - Linking data
- July 23rd, 2025
 - Exploratory Analysis
- July 20th, 2025
 - Visualization and finalizing the analysis



This session is being recorded.

Please submit questions to the Q&A box.

See ZOOM Help Center for connection issues: https://support.zoom.us/hc/en-us

If issues persist and solutions cannot be found through Zoom, please contact Andres Arroyo at aa17@cornell.edu.

SESSION AGENDA

STS recap

Exploratory analysis

Demonstration in R

STS RECAP

LINKING DATA

- Record-level linkage possible internally with NDACAN administrative data
- Aggregate linkage possible with other NDACAN data, external data
- Linkage requires clean, well-formatted data files with shared variables
- Linkage is a useful tool for building large datasets, dealing with data limitations, and enabling powerful research designs
- Linkage can create and/or amplify data problems if data limitations are not understood and addressed

RESEARCH QUESTION

What is the relationship between lifetime incidence of removal and full-time employment among youth three years after aging out of foster care?

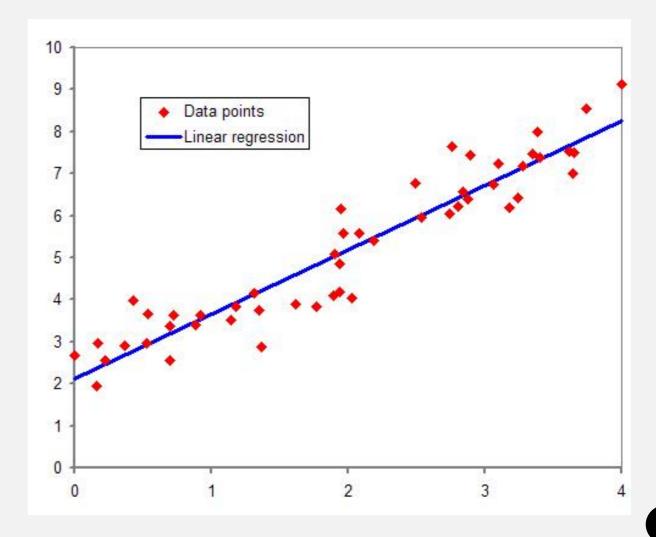
EXPLORATORY ANALYSIS

INTRODUCTION TO LINEAR REGRESSION

- Regression analysis is a statistical method for estimating the relationship between two (or more) random variables:
 - An outcome (or dependent variable)
 - One or more predictors (or independent variables)
- Linear regression is a powerful, flexible class of regression models that assume a linear relationship between the outcome and predictors

ESTIMATING LINEAR REGRESSION MODELS

- Linear regression models find the line (or hyperplane) of best fit representing the relationship between two (or more) random variables
- The most common method for estimating regression models is ordinary least squares (OLS)
- OLS minimizes the sum of the squares of the differences (residuals) between predicted values (blue line) and observed values (red points)



FUNDAMENTAL COMPONENTS OF LINEAR REGRESSION MODELS

Consider the following bivariate regression:

$$\mathbf{y} = \beta_0 + \mathbf{x}\beta_1 + \mathbf{\varepsilon}$$

y is a $N \times 1$ vector of outcomes, where N is the number of observations in our data x is a $N \times 1$ vector of predictors

 β_0 is the main intercept (the predicted value of y when x = 0)

 β_1 is the coefficient (or parameter) of interest

 β_1 represents the slope of the line of best fit

It is the main goal of regression analysis to estimate coefficients of interest validly (without bias) and efficiently (with precision)

 ϵ is the error term, a $N \times 1$ vector of residuals (distances between red dots and blue line)

BASELINE MODEL

Instead of using matrix notation, we can represent the model using indexing:

$$y_i = \beta_0 + x_i \beta_1 + \varepsilon_i$$

In the case of our research design, the regression model takes the form:

$$CurrFTE_3_i = \beta_0 + TOTREM_i\beta_1 + \varepsilon_i$$

- Because our outcome is binary, this model is known as a linear probability model.
 - In Presentation 5 we'll explore other models for binary and other categorical outcomes.

CORRELATION AND CAUSALITY

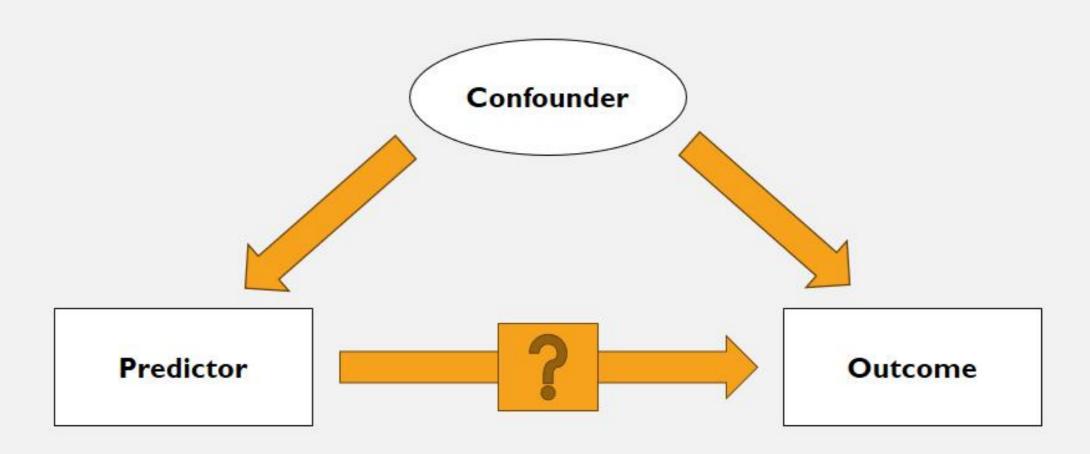
Recall our research question:

What is the relationship between lifetime incidence of removal and full-time employment among youth three years after aging out of foster care?

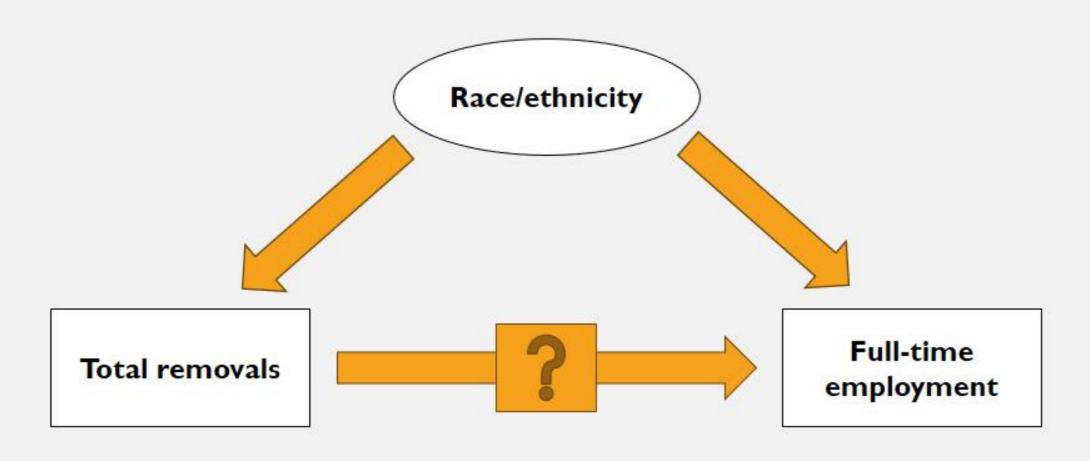
What if we want to strengthen it to something like:

What is the effect of lifetime incidence of removal on full-time employment among youth three years after aging out of foster care?

OMITTED-VARIABLE BIAS



OMITTED-VARIABLE BIAS: EXAMPLE



CONTROLLING FOR OBSERVABLE CONFOUNDERS

We can deal with observed confounders by incorporating them into our model as additional predictors (or covariates).

Note that adding a predictor with C categories introduces C-1 parameters, which measure the difference in outcome for each category relative to a reference category (here, $White_i$)

$$CurrFTE_3_i = \beta_0 + TOTREM_i\beta_1 +$$

$$Black_i\beta_2 + AIAN_i\beta_3 + Asian_i\beta_4 + NHPI_i\beta_5 + Multi_i\beta_6 + Hisp_i\beta_7 +$$

$$\varepsilon_i$$

CONTROLLING FOR UNOBSERVABLE CONFOUNDERS

- There are many, many potential confounders that are not observed or even observable
 - For example, the relationship between foster placement and employment may be confounded by (intangible) features of child welfare policy and practice
- One simple strategy for addressing such unobserved confounders: introduce group-specific intercepts, or fixed effects
 - For example, if CPS systems vary across states but are stable within them, including state intercepts will control for them

EXAMPLE: STATE FIXED EFFECTS

$$y = \beta_0 + x\beta_1 + S\gamma + \varepsilon$$

S is an $N \times (G-1)$ matrix of indicator variables, where G is the number of US states

 γ is a $(G-1)\times 1$ vector of coefficients, or state fixed effects

$$CurrTFE_3 = \beta_0 + TOTREM\beta_1 + RaceEthn\delta + State\gamma + \varepsilon$$

STRATIFICATION

- Perhaps there's reason to think the answer to your research question will be different for different populations.
 - For example, the relationship between removal incidence and full-time employment may be different for people who are and are not currently enrolled in school
- Stratification allows our model estimates to vary across the values of a stratum variable
 - For example, we could estimate our model separately on currently enrolled and not currently enrolled populations
 - Or we could interact the enrollment variable (CurrEnroll) with all other model parameters

RELAXING PARAMETRIC ASSUMPTIONS

- By default, linear models assume linear relationships between predictors and outcomes
- We can relax this constraint in at least two ways:
 - Adding quasi-linear parameters like quadratic terms or splines
 - Including separate parameters for each level of a variable
- The next presentation will explore models for non-continuous outcomes

EXTENSION: DEALING WITH MISSING DATA

- Statistical software (including most R packages) will almost always listwise-delete records with missing values of modeled variables
- Listwise deletion is rarely advisable, particularly if large amounts of data are missing
- Always:
 - Examine the degree of missingness in your data
 - Consider the mechanisms that generated the missing data
 - Implement a defensible approach to dealing with missing data

DEMONSTRATION IN R

QUESTIONS?

ALEX ROEHRKASSE AROEHRKASSE BUTLER. EDU

NOAH WON NOAH.WON@DUKE.EDU

PAIGE LOGAN PRATER
PAIGE.LOGANPRATER@UCSF.EDU

NEXT WEEK...

Date: July 30th, 2025

Topic: Visualization and Finalizing the Analysis

Instructor: Noah Won

R CODE PAGE I OF 5

```
# NOTES #
#This program file demonstrates strategies discussed in
# session 4 of the 2025 NDACAN Summer Training Series
# "Data Management."
# For questions, contact the presenter
# Noah Won (noah.won@duke.edu).
# Note that because of the process used to anonymize data,
# all unique observations include partially fabricated data
# that prevent the identification of respondents.
# As a result, all descriptive and model-based results are fabricated.
# Results from this and all NDACAN presentations are for training purposes only
# and should never be understood or cited as analysis of NDACAN data.
#TABLE OF CONTENTS #
# 0. SETUP
# I. Simple Linear Regression
# 2. Multiple Regression
# 3. Stratified Multiple Regression
```

R CODE PAGE 2 OF 5

```
# 0. SETUP #
# Clear environment
rm(list=ls())
# Installs packages if necessary, loads packages if (!requireNamespace("pacman", quietly = TRUE)){ install.packages("pacman")
pacman::p_load(data.table, tidyverse, mice)
# Defines filepaths working directory project <- "C:/Users/nhwn1/Downloads/STS5/data" data <- "C:/Users/nhwn1/Downloads/STS5/data"
# Set working directory
setwd(project)
# Set seed
set.seed(1013)
```

R CODE PAGE 3 OF 5

```
# Let's read in our cleaned, anonymized
# versions of the 2020 AFCARS files
afcars <- fread(paste0(data,'/afcars_clean_anonymized_linear.csv')) head(afcars, 20)
# Running frequency tables of predictors of interest table(afcars$SEX)
table(afcars$RaceEthn)
table(afcars2$FCMntPay)
\# Creating Dummy Variables and Age Variables for Predictors \# Also filtering out those older than 30
afcars2 <- afcars %>%
        mutate(SEX_d = case_when(
SEX == "Male" ~ I,
           SEX == "Female" \sim 0),
        Hispanic = case when(
RaceEthn == "Hispanic" ~ I,
           TRUE \sim 0),
        age = as.numeric(difftime(Sys.Date(), DOB, units = "days")) / 365.25
        filter(age <= 30)
# Checking new derived variables table(afcars2$SEX_d) table(afcars2$Hispanic)
table(afcars2$age)
```

R CODE PAGE 4 OF 5

```
# Let's run a linear regression using age as a predictor and fcmntpay as an outcome
model <- Im(FCMntPay \sim age, data = afcars2)
summary(model)
#Let's visualize this model
ggplot(afcars 2, aes(x = age, y = FCMntPay)) +
 geom point() +
 geom_smooth(method = "lm", col = "red") +
 labs(title = "Linear Regression: FCMntPay ~ age",
     x = "age",
     y = "FCMntpay")
#A written form of our model is as follows: FCMntPay = 85.594 * age - 139.5495
# 3. Multiple Linear Regression #
# Our model seems to describe a positive relationship between age and FCMntPay but what about
# Hispanic status as a confounder?
model2 <- Im(FCMntPay \sim age + Hispanic, data = afcars 2)
summary(model2)
# It seems that Hispanic status has a negative effect on FCMntPay
# Keep in mind that the beta values for age and the intercept have changed #A written form of our model is as follows: FCMntPay = 85.594 * age + -105.2086 * Hispanic -
119.0115
```

R CODE PAGE 5 OF 5

```
# 4. Stratified Multiple Linear Regression #
# Stratified regression models fit different models based on the stratifications of a provided variable
# Adding a dummy variable and using a stratified regression model can be used to address confounding variables
# Stratified models are helpful when a variable violates linearity or homoscedasticity assumptions and cannot
# be used in a linear model
afcars3 <- afcars2 %>%
 filter(!is.na(SEX d))
model3 <- afcars3 %>%
 group_by(SEX_d) %>%
 do(model4 = Im(FCMntPay \sim Hispanic + age, data = .))
model3 %>%
 do({
  model_summary <- summary(.$model)
  data.frame(
   SEX d = unique(.\$SEX d),
    Intercept = coef(model summary)[1, 1],
    Hispanic coef = coef(model summary)[2, 1],
   Age coef = coef(model summary)[3, 1]
#A written form of our model is as follows:
#Women - FCMntPay = 98.5 * age + -118 * Hispanic - 206
# Men - FCMntPay = 73.2 * age + -85.7 * Hispanic - 40.1
# It seems that women have a larger increase in FCMntPay compared to men as they age, but Hispanic
# women have less FCMntPay than Hispanic men
```