WELCOME TO THE 2023 NDACAN SUMMER TRAINING SERIES!

- The session will begin at 12pm EST.
- Please submit questions to the Q&A box.
- This session is being recorded.

NDACAN SUMMER TRAINING SERIES

National Data Archive on Child Abuse and Neglect Cornell University & Duke University

NATIONAL DATA ARCHIVE ON CHILD ABUSE AND NEGLECT

An Office of the Administration for Children & Families

NDACAN SUMMER TRAINING SERIES SCHEDULE 2023

- July 5 Introduction to NDACAN and the Administrative Data Series
- July 12 New Data Acquisition: CCOULD Data
- July 19 Causal Inference Using Administrative Data
- July 26 Evaluating and Dealing with Missing Data in R
- August 2 Time Series Analysis in Stata
- August 9 Data Visualization in R

SESSION AGENDA

• Topics in data visualization

• Making visualizations in R with ggplot2

TOPICS IN DATA VISUALIZATION

WHY VISUALIZE DATA

- Visualize raw data to uncover patterns and gain better understanding, such as trends or outliers
- Display results from modeling or estimation
- Figures can help assess model fit
- More palatable, memorable, and usually easier to compare trends than tables

EFFECTIVE VISUALS

- Who is the intended audience?
- What are you trying to convey?
- What do you want to highlight in your visualizations?
- Don't overcomplicate or make too 'busy'
- Add informative titles and labels (axes, legends, variables) so the figure can stand on its own
- Concise and clear legends
- Use the appropriate figure for your data, e.g. bar charts for percentages or categorical variables, density plots or scatterplots for continuous data

CONSIDERATIONS

- Color blind accessibility
- Colors may look different on different computer screens
- Aesthetics is important but subjective
- What type of graph is appropriate for your data

DIFFERENT GRAPHS FOR DIFFERENT DATA

- Density plots continuous data
- Scatter plots continuous data best (could use ordinal)
- Bar plots ordinal data
 - Stacked bar plots
- Heat maps ordinal and continuous, 3 dimensions

CAUTIONS

- Axes scales
- Aspect ratio, e.g. width and height of final figure
- What estimate is being shown, e.g. rates vs counts
 - Is it misleading?
 - Is it appropriate?
 - Is it the most effective at telling your story?
- Misleading information or presentation

Example of scatter plots of the data

load data from
MASS package
library(MASS)
data("Boston")

see data codebook
help(Boston)

make figure
pairs(Boston[,-(1:5)])

Example of residuals and diagnostics plots

make 2x2 figure
par(mfrow = c(2,2))

plot model results
plot(m1)

Estimates of relative survival rates, by cancer site

	% survival rates and their standard errors					
	5 year	10 year	15 year	20 year		
Prostate	98.8 0.4	95.2 0.9	87.1 1.7	81.1 3.0		
Thyroid	96.0 0.8	95.8 1.2	94.0 1.6	95.4 2.1		
Testis	94.7 1.1	94.0 1.3	91.1 1.8	88.2 2.3		
Melanomas	89.0 0.8	86.7 1.1	83.5 1.5	82.8 1.9		
Breast	86.4 0.4	78.3 0.6	71.3 0.7	65.0 1.0		
Hodgkin's disease	85.1 1.7	79.8 2.0	73.8 2.4	67.1 2.8		
Corpus uteri, uterus	84.3 1.0	83.2 1.3	80.8 1.7	79.2 2.0		
Urinary, bladder	82.1 1.0	76.2 1.4	70.3 1.9	67.9 2.4		
Cervix, uteri	70.5 1.6	64.1 1.8	62.8 2.1	60.0 2.4		
Larynx	68.8 2.1	56.7 2.5	45.8 2.8	37.8 3.1		
Rectum	62.6 1.2	55.2 1.4	51.8 1.8	49.2 2.3		
Kidney, renal pelvis	61.8 1.3	54.4 1.6	49.8 2.0	47.3 2.6		
Colon	61.7 0.8	55.4 1.0	53.9 1.2	52.3 1.6		
Non-Hodgkin's	57.8 1.0	46.3 1.2	38.3 1.4	34.3 1.7		
Oral cavity, pharynx	56.7 1.3	44.2 1.4	37.5 1.6	33.0 1.8		
Ovary	55.0 1.3	49.3 1.6	49.9 1.9	49.6 2.4		
Leukemia	42.5 1.2	32.4 1.3	29.7 1.5	26.2 1.7		
Brain, nervous system	32.0 1.4	29.2 1.5	27.6 1.6	26.1 1.9		
Multiple myeloma	29.5 1.6	12.7 1.5	7.0 1.3	4.8 1.5		
Stomach	23.8 1.3	19.4 1.4	19.0 1.7	14.9 1.9		
Lung and bronchus	15.0 0.4	10.6 0.4	8.I 0.4	6.5 0.4		
Esophagus	14.2 1.4	7.9 1.3	7.7 1.6	5.4 2.0		
Liver, bile duct	7.5 1.1	5.8 1.2	6.3 1.5	7.6 2.0		
Pancreas	4.0 0.5	3.0 1.5	2.7 0.6	2.7 0.8		

Example of an effective and simple visual

Table \rightarrow Slope Graph

	Estimates of % survival rates				
	5 year	10 year	15 year	20 year	
Prostate	99	95			
			87		
Thyroid	96 ——	96		- 81	
Testis	95	94	94 —	75	
Melanomas	89		91		
Breast	86	87	- 84	83	
	~	78			
Hodgkin's disease	85	- 80	71		
			-74	65	
Corpus uteri, uterus	84	83		67	
Urinary, bladder	82			79	
- · · ·		76			
Cervix, uteri	//		70 —	68	
Larynx	69	- 64	63	60	
		57			
Rectum	63		46		
Kidney, renal pelvis	62	55	50	38	
		54	52	- 49	
Colon	62	<	50	47	
Non-Hodgkin's	58	- 55	54		
Oral cavity, pharynx	57	46			
		44	38 —	- 34	
				- 34	
Ovary	55 🔍			33	
Leukemia	43	49	50	50	
		32			
Brain, nervous system	32 —			26	
Multiple myeloma	30	27	28	26	
Stomach	24 —	13	7	5	
Lung and bronchus	15 -	<u> </u>	I9	- 16	
Eachague	13	<u> </u>	8-	- 13	
Esopnagus	14	8	8	6	
		-		5	
Liver, bile duct	8	66	6	8	

- 3

Pancreas

Source: Edward Tufte, *Beautiful Evidence*, pp. 174, 176. Obtained from https://www.edwardtufte.com/bboard/q-and-a-fetch-msg?msg_id=0003nk Example of confusing and overwhelming visual

Example of confusing and misleading visual

Source: https://www.cnbc.com/2019/06/12/tesla-looks-like-netflix-did-in-2011and-it-may-see-a-similar-recovery.html

Example of busy and confusing visual

Most airfares have fallen since 2014, with prices on transatlantic and long-haul routes declining the most 10,000 + 10% 8,000 Change in ticket price v distance Distance, km 2014-18*, selected routes 6,000 Singapore 4,000 London-Frankfurt 2000 More Amsterdam expensive , Boston-Dallas London Orlando-Seattle Less O New York-Los Angeles expensive Hong Kong-Singapore Hong Kong-Beijing 2.000 -10% O New York-Frankfurt 4,000 O Dubai-Singapore % Distance, km London-Dubai class ticket, 9 New York-London Beijing-Paris Vork-Paris Los Angeles-6,000 change in pice be cot Orlando-Londor 8,000 -30% San Francisco-Ò Beijing Los Angeles London Ó Los Angeles-Paris -40% -O Transatlantic 10,000 -O Other -50% Discount airlines are flying The oil-price helped airlines As a result, fares have plateaued after more long routes, cut fares, but fuel costs have doubled since 2016 a steep decline increasing competition Share of seats offered by Norwegian Average ticket price on six on six transatlantic routes[†], % Jet fuel, \$ per litre transatlantic routes[†], \$ 12 0.80 1,200 0.60 1,000 0.40 800 0.20 600 2014 15 17 18* 16 17 18 2014 15 16 2014 15 16 17 18* Sources: Expedia; Chris Tarry (CTAIRA); CapStats; S&P Global Platts *Comparing equivalent quarters †Routes highlighted in blue The Economist

Source: https://www.economist.com/graphic-detail/2018/12/08/why-ticket-priceson-long-haul-flights-have-plummeted?___twitter_impression=true

Example of misleading axes

Obtained from: https://www.kdnuggets.com/2012/12/taking-misleading-statistics-to-a-new-level.html

MAKING VISUALIZATIONS IN R

MAKING FIGURES IN R

- The package ggplot2 (grammar of graphics) within the tidyverse universe produces beautiful figures
- Lots of customization possible
- Able to construct complex plots
- Works by constructing figures with 'layers'

USING GGPLOT

• Figures made with ggplots are built by layering functions

ggplot(DATA, aes(x = XVAR, y = YVAR))

• This would not plot anything! Need a layer for points, and/or lines

USING GGPLOT

• Figures made with ggplots are built by layering functions

```
ggplot(DATA, aes(x = XVAR, y = YVAR)) +
geom_point()
```

 This would make a basic scatter plot of XVAR by YVAR from dataset DATA with just points

USING GGPLOT

• Figures made with ggplots are built by layering functions

```
ggplot(DATA, aes(x = XVAR, y = YVAR)) +
geom_point() +
geom_line()
```

• This would make a basic scatter plot of XVAR by YVAR from dataset DATA with lines connecting the points

EXAMPLE IN R

- Using NCANDS data (National Child Abuse National Data System, e.g. data on child maltreatment reports)
 - Number of unsubstantiated and substantiated reports by year (2010-2020), state, race/ethnicity, sex
- Linked with Census population data to get respective populations, e.g. for using population as the denominator for rates
 - Population by year, state, race/ethnicity, sex

FOLLOW THE EXAMPLE

- NCANDS data are available to individuals with an IRB, view the list of years from the NDACAN website: <u>www.ndacan.acf.hhs.gov/datasets/datasets-list-ncands-child-file.cfm</u> and follow the "Order dataset" link on the right side of the details page of the dataset of interest
- Similar state level-data are publicly available, though, in excel format from the Child Maltreatment reports in a few years: 2010, 2012, 2013. A list of all Child Maltreatment reports can be found here: <u>www.acf.hhs.gov/cb/data-research/child-maltreatment</u>
- Census population data can be found here: www.census.gov/programs-surveys/popest/data/datasets.All.List_1725564412.html#list-tab-List_1725564412
- Alternative source for population data: https://seer.cancer.gov/popdata/download.html

A SMALL HANDFUL OF USEFUL GRAPHING FUNCTIONS

- Plot multiple graphs into one figure
 - cowplot::plot_grid()
 - ggpubr::ggarrange()
- Add facets to ggplot, add in as layer
 - ... + facet_grid()
 - ... + facet_wrap()
- Grpahs by state, add in as layer
 - ... + geofacet::facet_geo()
 - ... + usmap::plot_usmap()
 - ... + coord_map()

- Interaction plot
 - interaction.plot()
- Check model fit
 - plot (m1) where m1 would be the fitted model output, from lm() for example

REFERENCES AND RESOURCES

Practical & coding

- Kieran Healy. Data Visualization: A Practical Introduction
- Hadley Wickham. Ggplot2: Elegant Graphics for Data Analysis
- Winston Chang. R Graphics Cookbook

Theoretical

- Edward Tufte. The Visual Display of Quantitative Information
- Edward Tufte. Envisioning Information

QUESTIONS?

SARAH SERNAKER STATISTICIAN

SARAH.SERNAKER@DUKE.EDU

R CODE PAGE I OF 8

```
library(data.table)
                    # package for reading the data
library(tidyverse)
library(ggplot2)
library(scales)
                   # package for label formats
library(geofacet)
                   # package for state graphs
# set directory to folder where data are
setwd("C:/Users/ss1216/Box/NDACAN/Presentations/Summer Series 2023/S6 - Data Viz")
##### LOAD DATA #####
# load NCANDS data of number of substantiated/unsubstantiated reports
ncands = fread("CF summerseries.csv")
head(ncands)
ncands2 = ncands \% + filter out PR (b/c not in census data) and counts less than 10 (for data protection)
               filter(staterr != "PR",
                   unsubst > 10,
                   subst > 10)
# load census data
census = fread("census pop.csv")
head(census)
### join census and ncands
# left join because some states not reported in ncands from 2010-2012
dat = ncands2 \gg \% # rename variables to link with census
               rename(year = subyr,
                   st = staterr,
                   sex = chsex) %>%
            # left join because ncands may not have all states all years like census
            left join (census) %>%
            # reorder variables
            dplyr::select(year, st, state, stfips, everything()) %>%
            # sort by year, state, and race
            arrange(year, stfips, raceEthn)
head(dat)
```

R CODE PAGE 2 OF 8

```
## Data cleaning
dat2 = dat \% > \% \# add informative labels to race and sex
          mutate(raceEthn2 = case when(raceEthn == I \sim "White NH",
                             raceEthn == 2 \sim "Black NH",
                             raceEthn == 3 \sim "Native Am NH",
                             raceEthn %in% 4:5 ~ "AAPI NH",
                             raceEthn == 6 \sim "Multiracial NH",
                             raceEthn == 7 \sim "Hispanic"),
                   sex2 = ifelse (sex == 1, "Male", "Female"))
head(dat2)
##### Summarize data to national level
# totals in each year - grouped by race and sex
natdat = dat2 %>% group by(year, raceEthn2, sex2) %>%
           summarise(unsubst = sum(unsubst,na.rm = TRUE),
                  subst = sum(subst, na.rm = TRUE),
                  pop = sum(pop,na.rm = TRUE))
head(natdat)
# total in each year - total over everyone
natdat_tot = dat2 %>% group_by(year) %>%
             summarise(unsubst = sum(unsubst, na.rm = TRUE),
                   subst = sum(subst na.rm = TRUE),
                   pop = sum(pop,na.rm = TRUE))
head(natdat tot)
# put natdat_tot data in long format
natdat_tot_long = natdat_tot %>% pivot_longer(cols = c(unsubst, subst),
                             names to = "rptoutcome ",
                             values_to = "rpts ")
head(natdat_tot_long)
##### FIGURES ########
# basic scatter plot of substantiated reports, at national level
p = ggplot(natdat_tot_long %>% filter(rptoutcome == "subst"),
      aes(x = year, y = rpts)) +
      geom_point()
```

R CODE PAGE 3 OF 8

```
# add unsubstantiated data, at national level
# make the lines different color based on substantiation/outcome
p^2 = ggplot(natdat tot long,
        aes(x = year, y = rpts, color = rptoutcome)) +
 geom point() +
geom_line()
p2
# take previous figure but fix labels and some reformatting
p2 +
 # change x axes lines to 2010-2020, incremented by 1 yr
 scale x continuous(breaks = 2010:2020) +
 # change y axes to start at 0 and go to 3,000,000, incremented by 500,000 - formatted with commas
 scale y continuous(limits = c(0,3e6),
             breaks = seq(0, 3e6, by = 5e5),
            label = scales::comma) +
 \# relabel x and y axes, and title
 xlab("Year") +
 ylab("Number children") +
 ggtitle("Number of children on reports of maltreatment, substantiated or unsubstantiated") +
 # remove the color legend title name
 labs(color = "") +
 # relabel the values of "subst" and "unsubst" respectively, need to specify 'values'/colors for each one too
 labels = c("Substantiated", "Unsubstantiated")) +
```

```
# put the legend horizontally on the bottom
theme(legend.position = "bottom")
```

R CODE PAGE 4 OF 8

```
#### just look at substantiated cases
p +
 geom line() +
 scale x continuous(breaks = 2010:2020) +
 scale y continuous (label = scales::comma,
             \#limits = c(0,650000)
 xlab("Year") +
 ylab("Number substantiated") +
 ggtitle("Number of children on reports of substantiated maltreatment")
## look at national trends of race
# make national level data - totals by race/ethnicity
natdat_race = natdat %>% group_by(year, raceEthn2) %>%
                summarise (unsubst = sum(unsubst, na.rm = TRUE),
                       subst = sum(subst, na.rm = TRUE),
                       pop = sum(pop, na.rm = TRUE))
# Plot number substantiated by race
ggplot(natdat_race, aes(x = year, y = subst, color = raceEthn2)) +
 geom point() +
 geom line() +
 scale x continuous(breaks = 2010:2020) +
 scale y continuous (label = scales::comma,
              breaks = seq(0,300000, by = 50000)) +
 guides(color = guide_legend("Race"))+
 xlab("Year") +
 ylab("Number of substantiated cases") +
 ggtitle("Number of children on reports of substantiated reports of maltreatment")
```

R CODE PAGE 5 OF 8

Create rates to standardize comparison # national level rates of substantiated reports per 100k children - by race natdat_race3 = natdat_race %>% mutate(subst_rate = 100000*subst/pop)

```
# grouping by sex too now
natdat_race_sex = natdat %>% group_by(year, raceEthn2, sex2) %>%
summarise(unsubst = sum(unsubst, na.rm = TRUE),
subst = sum(subst, na.rm = TRUE),
pop = sum(pop, na.rm = TRUE)) %>%
mutate(subst_rate = 100000*subst/pop)
```

R CODE PAGE 6 OF 8

```
# facet by sex
ggplot(natdat race sex, aes(x = year, y = subst rate, color = raceEthn2)) +
 geom point() +
 geom line() +
 facet grid(\sim sex2) +
 scale x continuous(breaks = 2010:2020) +
 scale_y_continuous(label = scales::comma,
              limits = c(0, 1700),
              breaks = seq(0, 1600, by = 400)) +
 guides(color = guide_legend("Race"))+
 xlab("Year") +
 ylab("Rate of substantiated cases (per 100k children)") +
 ggtitle("Rate of substantiated reports of maltreatment (per 100,000 children)") +
 theme (legend.position = "bottom")
# facet by race instead
ggplot(natdat race sex, aes(x = year, y = subst rate, color = sex2)) +
 geom point() +
 geom line() +
 # using facet_wrap now, can easily specify 2 rows and free scales between figures
 facet_wrap(~raceEthn2,nrow = 2, scales = "free") +
 scale_x_continuous(breaks = 2010:2020) +
 scale y continuous(label = scales::comma) +
 guides(color = guide_legend(""))+
 xlab("Year") +
 ylab("Rate of substantiated cases (per 100k children)") +
 ggtitle("Rate of substantiated reports of maltreatment (per 100,000 children)") +
 theme (legend.position = "bottom")
```

R CODE PAGE 7 OF 8

```
# collapse data over state
statedat = dat %>% group_by(year, st, state, stfips) %>%
            summarise (unsubst = sum(unsubst, na.rm = TRUE),
                  subst = sum(subst, na.rm = TRUE),
pop = sum(pop, na.rm = TRUE)) %>%
          arrange(year, stfips)
# plot substantiated by state
ggplot(statedat, aes(x = year, y = subst)) +
 geom point() +
 geom line() +
 facet_geo(~st, grid = "us_state_grid | "#, scales = "free y"
 scale \dot{x} continuous(breaks = 2010:2020)+
 scale y continuous(label = scales::comma) +
 xlab("Year") +
 ylab("Number children") +
 ggtitle("Number of children on reports of maltreatment, substantiated or unsubstantiated") +
 theme(axis.text.x = element text(angle = 45, hjust = 1))
## make rates instead
statedat2 = statedat %>% mutate(subst rate = 10000*subst/pop,
                      unsubst rate = 10000*unsubst/pop)
# plot substantiated rate by state
ggplot(statedat2, aes(x = year, y = subst rate)) +
 geom point() +
 facet_geo(~st, grid = "us_state_grid1") +
scale_x_continuous(breaks = 2010:2020) +
 xlab("Year") +
 ylab("Rate per 10k Children ") +
 ggtitle("Rate of children on reports of maltreatment, substantiated or unsubstantiated") +
 theme(axis.text.x = element text(angle = 45, hjust = 1))
```

R CODE PAGE 8 OF 8

```
## plot subst and unsubt by color - make long first
statedat_long = statedat2 %>% dplyr::select(year,st,state,stfips,ends_with("rate")) %>%
                    pivot_longer(cols = subst_rate:unsubst_rate,
                             names_to = "rptoutcome",
                             values to = "rate")
# plot substantiated and unsubstantiated rate by state
ggplot(statedat long, aes(x = year, y = rate, color = rptoutcome)) +
 geom_point() +
 geom line() +
 facet geo(~st, grid = "us state grid]") +
 scale_x_continuous(breaks = 2010:2020) +
 xlab("Year") +
 ylab("Rate per 10k Children ") +
 ggtitle("Rate of children on reports of maltreatment, substantiated or unsubstantiated") +
 theme(axis.text.x = element_text(angle = 45, hjust = 1)) +
 labs(color = "") +
 scale color manual(values = c("red","blue"),
              breaks = c("subst_rate", "unsubst_rate"),
              labels = c("Substantiated", "Unsubstantiated")) +
 theme(legend.position = "bottom",
     # edit axis text to be a little smaller and vertical
     axis.text.x = element text(angle = 90, vjust = 0,
                        size = 8)
```