
WELCOME 
TO THE 2023 

NDACAN 
SUMMER 

TRAINING 
SERIES!

• The session will begin at 12pm 

EST. 

• Please submit questions to the 

Q&A box. 

• This session is being recorded.
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NDACAN SUMMER TRAINING SERIES 
SCHEDULE 2023

• July 5   —  Introduction to NDACAN and the Administrative Data Series 

• July 12   —  New Data Acquisition: CCOULD Data 

• July 19   —  Causal Inference Using Administrative Data 

• July 26   —  Evaluating and Dealing with Missing Data in R 

• August 2   —  Time Series Analysis in Stata 

• August 9   —  Data Visualization in  R
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SESSION AGENDA

• Understanding why data are missing 

• Common approaches to missing data 

• Multiple imputation with AFCARS/NCANDS and R 

• All code and demo data is available at 

• https://github.com/f-edwards/ndacan_workshops/tree/main
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INTRODUCTION TO MISSING DATA IN R
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WHY SHOULD WE CARE?

• Most statistical software will conduct “complete - case analysis” 

by default 

• Depending on how much data is missing in the variables 

you’ve chosen, this may result in throwing away a lot of 

perfectly good information! 

• This (at minimum) biases your standard errors, and may bias 

your coefficient estimates 

• With a few assumptions, we can correct the problem
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WHY ARE DATA MISSING?

• Missing completely at random (MCAR): The probability of a 

value being missing is the same for all observations in the data 

• Missing at random (MAR): The probability of a value being 

missing is random, conditional on other observed variables 

• Non-random missing data (MNAR): The probability of a value 

being missing depends on either A) some unobserved variable or B)

the value itself (censorship)
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COMMON APPROACHES TO MISSING 
DATA
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BASIC APPROACHES TO MISSING DATA

• Listwise deletion (complete case analysis) 

• Appropriate for data with very few missing 

observations, or when missingness is completely at 

random and missingness is rare (independent of all 

observed and unobservable variables) 

• Using alternative information (e.g. borrowing observation 

of sex from prior survey wave) 

• Nonresponse weighting 

• Becomes difficult when many variables are missing, sub-

populations of interest differ
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BASIC APPROACHES TO MISSING DATA

• Multiple imputation 

• Iterative modeling of all missing outcomes/predictors in 

model 

• Produces multiple possible random datasets, allows you 

to average over uncertainty generated by missing data 

• Does not recover “true” values 

• Under missing at random assumption, generates 

unbiased parameter and variance estimates
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MY PREFERRED APPROACH

• Understand your data! 

• Read the documentation 

• Do plenty of exploratory data analysis (cross tabs, data 

visuals, descriptives , look at the raw data) 

• Develop an understanding of the mechanisms of 

missing data in each dataset you use 

• Test your ideas for mechanisms of missing data when 

feasible
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MY PREFERRED APPROACH

• If MAR is a reasonable assumption (it often is), conduct 

multiple imputation 

• Because MAR is conditional on observables, including many 

variables in imputation models is often a good idea 

• Apply preferred final model / analysis over each imputed 

dataset, combine with Rubin’s rules, report revised estimates.
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APPLYING MISSING DATA 
METHODS TO AFCARS/NCANDS: 

A BRIEF INTRODUCTION
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SOME NOTES BEFORE STARTING

• More work will be required to get it right for your analysis 

• I’m using R (and the mice package) for my demo, but all major statistical packages (Stata, SAS, 

SPSS) use similar techniques 

• All code and demo data is available at

• https://github.com/f-edwards/ndacan_workshops/tree/main

• Submit data requests at https://www.ndacan.acf.hhs.gov/datasets/request-dataset.cfm

15

https://github.com/f-edwards/ndacan_workshops/tree/main
https://www.ndacan.acf.hhs.gov/datasets/request-dataset.cfm


SET UP

library(mice)
library(tidyverse)
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THE DATA WE ARE WORKING WITH: 
AFCARS FOSTER CARE 2018

names(afcars) 

## [1] "FY"       " FIPSCode " "Entered"  " RaceEthn " 

length(unique(afcars$FIPSCode )) 

## [1] 115
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TASK 1: IMPUTATION OF INDIVIDUAL-
LEVEL RACE-ETHNICITY DATA

• This is computationally intensive, so we’ll work with a single 

year of the data 

• If available, try to use a remote server for this kind of work 

• Multiple imputation benefits from having all relevant 

information included 

• I’ll use population composition here, but more variables = 

better imputations
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JOIN AFCARS TO POPULATION DATA TO 
IMPROVE PREDICTION

### Data from NIH; https://seer.cancer.gov/popdata/download.html
pop<-read_fwf("~/Projects/cps_lifetables/data/us.1990_2018.singleages.adjusted.txt",

fwf_widths(c(4, 2, 2, 3, 2, 1, 1, 1, 2, 8),
c("year", "state", "st_fips",
"cnty_fips", "reg", "race",
"hisp", "sex", "age", "pop"))) 

pop<-pop%>%
mutate(age = as.numeric(age),

pop = as.numeric(pop),
FIPSCode = paste( st_fips , cnty_fips , sep = "")) %>%

rename(FY = year)
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HARMONIZE RACE/ETHNICITY LABELS, 
AGGREGATE BY AGE

pop< - pop %>%
mutate(race_ethn =

case_when(
             race==1 & hisp ==0 ~ "White",
             race==2 ~ "Black",
             race==3 ~ "AIAN", 
             race==4 ~ " AsianPI ",
             hisp==1 ~ "Hispanic"))
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RESHAPE DATA TO MAKE COMPOSITION VARIABLES

pop< - pop %>%
filter(age<=18) %>%
group_by(FY, FIPSCode , race_ethn ) %>%
summarise(pop = sum(pop)) %>%
pivot_wider(names_from = race_ethn  , 

values_from = pop)

head(pop) 

## # A tibble : 6 x 7 

## # Groups:   FY, FIPSCode [6] 

##      FY FIPSCode AIAN AsianPI Black Hispanic White 

##   < dbl > < chr >    < dbl >   < dbl > < dbl >    < dbl > < dbl > 

## 1  1990 01001       24      32  2607       68  7852 

## 2  1990 01003      185      64  4952      352 21249 

## 3  1990 01005        8      12  4235       26  3507 

## 4  1990 01007       NA      NA  1392        8  3623 

## 5  1990 01009       41      10   175       93 10263 

## 6  1990 01011       NA       2  2965        4   555
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MAKE COMPOSITION VARIABLES

pop< - pop %>%
mutate(tot = AIAN + AsianPI + Black + Hispanic + White,

pct_AIAN = AIAN/tot, 
pct_AsianPI = AsianPI/tot,
pct_Black = Black/tot,
pct_Hispanic = Hispanic/tot) %>%

select(FY, FIPSCode , pct_AIAN , pct_AsianPI , pct_Black , 
pct_Hispanic)
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JOIN

afcars < - afcars %>%
left_join(pop) 
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WHAT WE’LL IMPUTE

table(is.na(afcars$RaceEthn )) 

##  

##  FALSE   TRUE  

## 295572   6819
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THE IMPUTATION MODEL

• Will build a multinomial regression for race/ethnicity 

• FC Entry, FY, and county population composition will be predictors
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BUILDING AN IMPUTATION MODEL IN R
afcars_imps<-mice( afcars ) 

##  

##  iter imp variable 

##   1   1  RaceEthn 

##   1   2  RaceEthn 

##   1   3  RaceEthn 

##   1   4  RaceEthn 

##   1   5  RaceEthn 

##   2   1  RaceEthn 

##   2   2  RaceEthn 

##   2   3  RaceEthn 

##   2   4  RaceEthn 

##   2   5  RaceEthn 

##   3   1  RaceEthn 

##   3   2  RaceEthn 

##   3   3  RaceEthn 

##   3   4  RaceEthn 

##   3   5  RaceEthn 

##   4   1  RaceEthn 

##   4   2  RaceEthn 

##   4   3  RaceEthn 

##   4   4  RaceEthn 

##   4   5  RaceEthn 

##   5   1  RaceEthn 

##   5   2  RaceEthn 

##   5   3  RaceEthn 

##   5   4  RaceEthn 

##   5   5  RaceEthn 

## Warning: Number of logged events: 2
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EVALUATING IMPUTATIONS

## # A tibble : 7 x 7 

##   RaceEthn `0`   `1`   `2`   `3`   `4`   `5` 

##   < fct >    < int > < int > < int > < int > < int > < int > 

## 1 1        82621 84400 84387 84410 84381 84334 

## 2 2        94897 96795 96734 96763 96779 96756 

## 3 3         5139  5243  5240  5238  5239  5244 

## 4 4         2460  2515  2520  2522  2517  2518 

## 5 5         1000  1020  1024  1020  1013  1019 

## 6 6        21121 21501 21537 21526 21551 21523 

## 7 7        88334 90917 90949 90912 90911 90997
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EXTENDING TO OTHER DATASETS / 
VARIABLES

• These methods extend relatively simply to other variables 

• But pay attention to the meaning of variables and relative share of 

missingness 

• Some variables are simply not reported in particular states/years 

• These present additional challenges - think carefully about why data 

might be missing 

• If you can meet the MAR assumptions, MI is a good approach 

• More imputations = more precision for uncertainty estimates
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WORKSHOP7_26_23.RMD R CODE PAGE 1 OF 3

### read pop data and harmonize variable names to afcars names 

pop<  -  read_csv  ("./data/pop_demo.csv") %>%  

  rename(St = state,  

         FY = year) 

``` 

Let's explore the AgeAtStart measure 

```{r} 

table( dat$AgeAtStart ) 

### explicitly recode missings 

dat<  -  dat %>%  

  mutate(    AgeAtStart    =  

           case_when            ( 

             AgeAtStart              >= 99 ~ NA, 

             T ~              AgeAtStart 

           )) 

``` 
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WORKSHOP7_26_23.RMD R CODE PAGE 1 OF 3

PIVOTING TO THE MICE DEMO WITH BUILT IN DATA 

```{r} 

head( nhanes ) 

summary( nhanes ) 

imps< - mice( nhanes ) 

``` 

```{r} 

m0< - lm( chl ~ age, data = nhanes ) 

m1< - lm( chl ~ age + bmi + hyp , data = nhanes ) 

```
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MAKE_POP_DATA.R CODE

library( tidyverse ) 

pop< - read_fwf ("./data/us.1990_2020.singleages.adjusted.txt", 

              fwf_widths                (c(4, 2, 2, 3, 2,  

                           1, 1, 1, 2, 8), 

                         c("year", "state", "                          st_fips                          ", 

                           "                            cnty_fips                            ", "                            reg                            ", "race", 

                           "                            hisp                            ", "sex", "age", "pop"))) 

pop_demo  <  -  pop %>%  

  filter(year==2019) %>%  

  select(year, state, sex, age, pop) %>%  

  mutate(age =   as.numeric   (age), 

         pop =          as.numeric          (pop)) 

write_csv(pop_demo, "./data/pop_demo.csv")
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MAKE_SAMPLE_DATA.R R CODE

####### make sample data for workshop 

###### read in and deidentify admin data for geo / time join 

library( data.table ) 

library( tidyverse ) 

ncands< - fread ("~/Projects/ ndacan_data /ncands/CF2019v1.tab") 

afcars< - fread ("~/Projects/ ndacan_data /afcars/FC2019v1.tab") 

##### select variables for join 

ncands_demo  <  -  ncands %>%  

  select(   subyr   ,   StaTerr   ,   ChAge   ) 

afcars_demo  <  -  afcars %>%  

  select(FY, STATE, St,   AgeAtStart   ) 

write_csv  (  ncands_demo  ,  

          "./data/ncands_demo.csv") 

write_csv ( afcars_demo , 

          "./data/afcars_demo.csv          ")
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READ_NDACAN_DATA.R R CODE PAGE 1 OF 3

### this script joins ndacan tables to SEER pop data 

### load libraries 

library( tidyverse ) 

### read in the demo files 

ncands< - read_csv ("./data/ncands_demo.csv") 

afcars< - read_csv ("./data/afcars_demo.csv") 

pop< - read_csv ("./data/pop_demo.csv") 

### harmonize the names in ncands and pop 

ncands<  -  ncands %>%  

  rename(year =   subyr   , 

         state =          StaTerr          , 

         age =          ChAge          ) 

unique( ncands$age ) 

### note that 77 and 99 have special meaning 

### recode 77 - > 0; 99 - > NA 

ncands  <  -  ncands %>%  

  mutate(age =    ifelse    (age==77, 0,  

                      ifelse                       (age==99, NA, 

                             age                             )))
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READ_NDACAN_DATA.R R CODE PAGE 2 OF 3

### collapse NCANDS to state - year, collapse pop to state - year 

ncands_st  <  -  ncands %>%  

  group_by    (year, state, age) %>%  

  summarize(   child_investigation   = n()) 

pop_st  <  -  pop %>%  

  filter(age<18) %>%  

  group_by    (year, state, age) %>%  

  summarize(pop = sum(pop)) 

#### join them together 

ncands_pop  <  -  ncands_st  %>%  

  left_join   (   pop_st   ) 

### super cool! 

### now let's do afcars 

afcars<  -  afcars %>%  

  rename(year = FY, 

         state = St, 

         age =           AgeAtStart           ) %>%  

  mutate(age =   ifelse   (age<0, 0, age), 

         age =           ifelse           (age==99, NA, age)) %>%  

  select(   -   STATE) 34



### collapse to state level 

afcars_st  <  -  afcars %>%  

  group_by    (year, state, age) %>%  

  summarize(fc = n()) 

### now join to ncands_pop 

ncands_afcars_pop  <  -  ncands_pop  %>%  

  left_join   (   afcars_st   ) 

### compute per capita rates 

ncands_afcars_pop  <  -  ncands_afcars_pop  %>%  

  mutate(   investigation_rate   =   child_investigation   / pop * 1000, 

         fc_rate          = fc / pop * 1000) 

### quick visuals 

ggplot ( ncands_afcars_pop , 

       aes         (x = age, y =         investigation_rate         )) +  

  geom_line    () +  

  facet_wrap   (~state) 

ggplot ( ncands_afcars_pop , 

       aes         (x = age, y =         fc_rate         )) +  

  geom_line    () +  

  facet_wrap   (~state) 

library( geofacet ) 

ggplot ( ncands_afcars_pop , 

       aes         (x = age, y =         fc_rate         )) +  

  geom_line    () +  

  facet_geo  (~state) 35
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WORKSHOP7_26_23.RMD R CODE PAGE 1 OF 3

--- 

title: "Handling missing data in AFCARS" 

output: html_notebook 

editor_options  :  

  chunk_output_type   : inline 

--- 

Load in the needed packages 

```{r} 

library( tidyverse ) 

library(mice) 

``` 

First let's load in the de - identified AFCARS data and state population data 

```{r} 

dat< - read_csv ("./data/afcars_demo.csv") 

36



QUESTIONS? 
FRANK EDWARDS

FRANK.EDWARDS@RUTGERS.EDU
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NEXT WEEK…

August 2nd, 2023 

Presenter:  

Alexander F. Roehrkasse, Ph.D ., 

Butler University 

Topic:  

Time Series Analysis in Stata
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